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Determination of the Electromagnetic Lagrangian
from a System of Poisson Brackets

Paul Bracken1
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The Lagrangian and Hamiltonian formulations of electromagnetism are reviewed and
the Maxwell equations are obtained from the Hamiltonian for a system of many electric
charges. It is shown that three of the equations which were obtained from the Hamil-
tonian, namely the Lorentz force law and two Maxwell equations, can be obtained as
well from a set of postulated Poisson brackets. It is shown how the results derived from
these brackets can be used to reconstruct the original Lagrangian for the theory aided
by some reasoning based on physical concepts.
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1. INTRODUCTION

The Maxwell equations provide a type of mathematical summary of several
fundamental laws of electromagnetism which originally had their origin in exper-
imental observations. The subsequent development of a non-Abelian extension of
the Maxwell theory to the non-Abelian Yang–Mills form and the diverse applica-
tions of Yang–Mills to the subatomic realm of high energy physics has probably
given further impetus to the study of Maxwell’s theory.

A very novel derivation of a pair of the four Maxwell equations was originally
introduced by Feynman, but the exact details of his argument remained unpub-
lished until some of the essential arguments were presented by Dyson (Dyson,
1990). It has also been shown that this procedure can be generalized as well to the
case of the dynamics of particles which possess other internal degrees of freedom
(Bracken, 1996b). The idea at the heart of these derivations is to postulate a funda-
mental set of Poisson brackets between the fundamental variables of the system.
The basic defining relations of the bracket are then applied to the original system
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of brackets as well as other operations, such as differentiation, to generate further
new relations and connections between the variables of the problem (Bracken,
1998). This process is capable of generating some of the Maxwell equations, as
we will show.

In this paper, we begin by developing the Hamiltonian formulation of the
Maxwell theory, and derive the Maxwell equations in this context. It is shown
that the Hamiltonian formalism of the classical system, like the Lagrangian for-
malism on which it is based, is also invariant under gauge transformations (Kobe,
1981; Kobe and Wen, 1982). Different Hamiltonians can be written so that they
all have the same form, often referred to as minimal electromagnetic coupling.
Next, the development of the Maxwell equations from a minimal set of defining
brackets involving the variables and the basic algebraic properties of the Poisson
bracket is reviewed (Bracken, 1998). To this end, a fundamental set of brackets
is postulated at the outset in a natural way, and subsequently the algebraic prop-
erties of the bracket as well defined analytic operations are applied to obtain the
basic Lorentz force law as well as a pair of the Maxwell equations. Based on
these initial results, some of the ideas of the inverse problem of the calculus of
variations are applied (Bracken, 1999a). To emphasize, the procedure relies on
defining a basic set of brackets and using fundamental properties of the bracket to
generate new relations, such as the Leibnitz rule and Jacobi identity, regardless of
the underlying definition of the bracket. It is shown from these results and with
the help of some additional physical motivation at the end that the full Lagrangian
for the theory can be reconstructed. In the sense that a Lagrangian theory can
be formulated out of a set of elementary results, the complete set of Maxwell’s
equations can be obtained. The results that are obtained from the Lagrangian by
means of the Euler–Lagrange equations, can then be used to define a Hamiltonian
for the theory to complete the construction (Kobe and Wen, 1980; Yang,
1976).

It may be asked why this approach is adopted. There are several approaches
already that begin this kind of development with commutators (Dyson, 1990).
Here we show it is possible to proceed entirely in the classical domain. Of course,
the Maxwell equations existed before and independently of quantum mechanics,
and nonetheless they are fundamental in generating quantum theories of electro-
magnetism. The same type of analysis can be carried out on classical theories of
gravity and it may prove possible to adopt some of the ideas here to proceed to
quantum theories of gravity.

2. LAGRANGIAN AND HAMILTONIAN FORMALISM

The system which is of interest here consists of a collection of nonrelativistic
particles which interact with an external electromagnetic field. The Lagrangian
for the system is sufficient to be used with the principle of least action to
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generate the equations of motion. Moreover, a Lagrangian is required to construct
a Hamiltonian for the system.

A system of nonrelativistic particles, each having a charge eα , mass mα

and a displacement vector rα(t) at time t for α = 1, 2, · · · , N in an electric field
E(x, t) and magnetic field B(x, t) can be described by the Lagrangian L, which in
Lorentz–Heaviside units takes the form

L = 1

2

∫
d3x (E2(x, t) − B2(x, t)) + 1

2

N∑
α=1

mα ṙ2
α + 1

c

∫
d3x (J · A − cρA0) − U.

(1)

For the sake of generality, an arbitrary static external potential energy U can be
included in the Lagrangian as well, but it is not essential for what follows. The
charge density ρ(x, t) of the system (1) is defined by

ρ(x, t) =
N∑

α=1

eαδ(x − rα(t)), (2)

and the current density J(x, t) associated with the motion of the particle is given
by

J(x, t) =
N∑

α=1

eα ṙαδ(x − rα(t)). (3)

Of course, the charge density and current density satisfy the equation of continuity.
The total electromagnetic field is characterized by the vector potential A and

a scalar potential A0 in an arbitrary gauge. The total electric and magnetic fields
are related to the potentials in the following way

E(r, t) = −∇A0 − 1

c

∂A
∂t

, B = ∇ × A, (4)

where ∇ is a vector operator and ∇α is the vector operator corresponding to particle
α. The equations of motion can be obtained from Hamilton’s principle of least
action by varying the action S

S =
∫ t2

t1

dt L.

The resulting Euler–Lagrange equations take the general form

d

dt

∂L

∂Q̇j

= ∂L

∂Qj

−
∑

i

∂i

∂L

∂(∂iQj )
, (5)

where the Qi pertain to any of the physical variables on which L depends. For
example, taking Q to be A0, variation of the action S with respect to A0 gives
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Gauss’s law. This can be obtained as well from the Euler–Lagrange system (5) by
identifying Qi with A0 and determining the derivatives in (5).

The Hamiltonian formalism for the total system is manifestly gauge invariant,
and can be determined by first calculating the canonical momenta. The canonical
momentum conjugate to the coordinate rα is given using (5) as

pα = ∂L

∂ ṙα

= mṙα + eα

c
A(rα, t), (6)

The canonical momentum conjugate to the field A is

� = ∂L

∂Ȧ
= −1

c
E. (7)

Since the Lagrangian is independent of the quantity Ȧ0, the canonical momentum
conjugate to A0 is �0 = 0. The Hamiltonian for the total system is defined by

H =
∫

d3x (� · Ȧ + �0Ȧ0) +
N∑

α=1

pα · ṙα − L. (8)

Substituting the canonical momenta �,�0 and ṙα in terms of pα from (6), as well
as the Lagrangian L given in (1), we obtain that

H =
N∑

α=1

1

mα

pα ·
(

pα − eα

c
A

)
− 1

2

∫
d3x (E2 − B2) − 1

c

∫
d3x (E · Ȧ)

−1

2

N∑
α=1

1

mα

(
pα − eα

c
A

)2

+ U − 1

c

∫
d3x (J · A − cρA0). (9)

Replacing Ȧ in the third term of (9) by solving for (4) Ȧ, we can write

H = 1

2

∫
d3x (E2 + B2) + 1

2

N∑
α=1

1

mα

(
pα − eα

c
A

)2
+ U +

∫
d3x E · ∇A0

+
N∑

α=1

eα

mαc
A ·

(
pα − eα

c
A

)
− 1

c

∫
d3x (J · A − cρA0). (10)

Grouping the last three terms in (10) together, this equation can be rewritten using
the expressions for ρ and J given in (2) and (3)

H = 1

2

∫
d3x (E2(x, t) + B2(x, t)) +

N∑
α=1

1

2mα

(
pα − eα

c
A(rα, t)

)2

+U +
∫

d3x (ρ − ∇ · E)A0. (11)
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A total derivative term has been dropped to write the Hamiltonian H in the form
(11).

From the Hamiltonian (11), Hamilton’s equations can be developed. The first
of Hamilton’s equations for particle α is found by differentiating H with respect
to pα ,

ṙα = ∂H

∂pα

= 1

mα

(
pα − eα

c
A

)
. (12)

Using (12) and the vector identity ∇α(ṙα · ṙα) = 2(ṙα · ∇α)ṙα + 2ṙα × (∇α × ṙα),
we obtain the second of Hamilton’s equations,

ṗα = −∂H

∂rα

= −eα

c
ṙα · ∇αA(rα, t) − eα

c
ṙα × (∇α × A(rα, t))

+ ∂U

∂rα

+ eα∇αA0(rα, t). (13)

Solving for pα in (12) and differentiating this with respect to time, we find

ṗα = mα r̈α + eα

c

(
Ȧα + ṙα · ∂Aα

∂rα

)
. (14)

Substituting (14) into (13), and simplifying with Equation (4) yields

mr̈α = eαE(rα, t) + eα

c
ṙα × B(rα, t) − ∂U

∂rα

. (15)

This is Newton’s second law in terms of the Lorentz force.
It remains to complete this process for the field variables and the procedure is

the same as for a system with a finite number of degrees of freedom. The functional
derivative of H is calculated with respect to � defined by (7), and this gives the
first of Hamilton’s equations

Ȧ = � ∂H

� ∂�
= −c(E + ∇A0), (16)

where the time derivative of A is a partial derivative.
The second of Hamilton’s equations is given by

�̇ = − � ∂H

� ∂A
= −∇ × B + 1

c
J, (17)

which is the Ampére–Maxwell law,

∇ × B = 1

c
J + 1

c

∂E
∂t

. (18)

The equation for �0 is given by

�̇0 = − � ∂H

� ∂A0
= −ρ + ∇ · E. (19)
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The scalar potential on the right of E given in (4) is not varied since E is pro-
portional to �, hence independent. Now, since �0 = 0, Equation (19) implies
Gauss’s law,

∇ · E = ρ. (20)

Finally, the equation for Ȧ0 is found by differentiating H with respect to �0.
Since �0 = 0, this equation is meaningless and does not provide an equation.
This procedure has in fact generated all four of Maxwell’s equations, although
two have not yet been explicitly written down. To obtain the remaining two
equations, first take the curl of (16) and use the identity ∇ × ∇A0 = 0 and (4),

∇ × E = −∇ × ∇A0 − 1

c

∂

∂t
∇ × A = −1

c

∂B
∂t

. (21)

This is Faraday’s law. The condition that magnetic monopoles do not exist follows
by taking the divergence of B given in (4),

∇ · B = 0. (22)

To summarize, the Maxwell’s equations are given by (18), (20), (21) and (22).

3. MAXWELL EQUATIONS AND POISSON BRACKETS

The algebra of classical observables on the manifold M will be denoted
by F . A Poisson structure on a manifold M is a skew-symmetric bilinear map
which is denoted {, } : F × F → F such that (i) (F , {, }) satisfies the Jacobi
identity {G, {H,K}} + {H, {K,G}} + {K, {G,H }} = 0, (ii) the map XG = {,G}
is a derivation of the associative algebra F(M) on M (Goldstein, 1950). It satisfies
the Leibnitz rule {G,H K} = H {G,K} + {G,H }K . A manifold M , which is
endowed with a Poisson bracket on F(M), is called a Poisson manifold. These
basic algebraic properties are used on their own without reference to a specific
form for the bracket to develop the stated results.

Let the local coordinate variables on the manifold be written in the form
(wa) = (qi, vi), where i = 1, 2, 3. Indices will be raised and lowered in a trivial
way using δij , and repeated indices are summed over. Here, the qi may be inter-
preted as position coordinates and vi represent velocity components. The Poisson
brackets are postulated in the following way (Bracken, 1996b, 1998),

{qi, qj } = 0, m{qi, vj } = δij . (23)

Any function H ∈ F will define a dynamical system on M by the equation

dG

dt
= {G,H }. (24)
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Let us postulate an H ∈ F such that equations of motion can be obtained from
(24) as follows,

q̇i = {qi,H } = vi, mv̇i = m{vi,H } = F i. (25)

Differentiating the second bracket in (23) with respect to time generates the
equation

{q̇i , vj } + {qi, v̇j } = 0. (26)

Multiplying both sides by m and substituting the equations of motion, there results
the expression

m{q̇i , q̇j } + {qi, Fj } = 0. (27)

Since the bracket is bilinear, this equation can be put into the form

{{qi, Fj }, qk} + m{{q̇i , q̇j }, qk} = 0. (28)

Substituting q̇i , q̇j and qk into the Jacobi identity, we have

{{q̇i , q̇j }, qk} + {{q̇j , qk}, q̇i} + {{qk, q̇i}, q̇j } = 0. (29)

The bracket {q̇j , qk} is proportional to δjk by (23), so (29) reduces to the
constraint

{{q̇i , q̇j }, qk} = 0. (30)

Substituting (30) into (28), we obtain that

{qk, {qi, Fj }} = 0. (31)

The tensor {qi, Fj } is therefore antisymmetric due to the bracket property. This
can be expressed in its dual form by the relation

{qi, Fj } = − e

mc
εijkBk(r, t). (32)

Substituting (32) into (31), a bracket which contains ql and Bk can be
obtained

{ql, Bk} = 0. (33)

The postulated relations (23) imply that the vector B depends only on the position
and time of the particle. Equations (33) and (23) imply that Fi is at most linear in
the velocities, and so we may write

Fi(r, t) = eEi(r, t) + e

c
εijkv

jBk(r, t). (34)
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This is the Lorentz force law and serves to define the electric field. Using the
property of bilinearity and the derivation property, we have{

qi, eEj + e

c
εjakvaBk

}
= e{qi, Ej } + e

c
εjak{qi, vaBk} = e{qi, Ej }

+ e

c
εjak{qi, va}Bk + e

c
εjakva{qi, Bk} = e{qi, Ej }

+ e

mc
εjikBk = e{qi, Ej } − e

mc
εijkBk. (35)

Since the result of (35) is the left-hand side of (32), it follows that

{qi, Ej } = 0. (36)

This bracket implies that the vector E, as in the case of B, depends only on the
time and position coordinates. Equations (27) and (32) can be combined and will
lead to a new equation for Bk in terms of the bracket

Bs = m2c

2e
εsij {q̇i , q̇j }. (37)

Applying the Jacobi identity to the variables q̇l , q̇j and q̇k and then contracting
with εljk , there results

εljk{q̇l , {q̇j , q̇k}} = 0.

Replacing the bracket {q̇j , q̇k} in this using (37) generates a new bracket
involving B,

{q̇l , ε
ljk{q̇j , q̇k}} = 2e

m2c
{q̇l , Bl} = 0.

This implies that {q̇l , Bl} = 0, and therefore

∇ · B = 0. (38)

To obtain a second equation, let us begin with the equation for Bs , given in (37).
Differentiating both sides with respect to t, we have

∂Bs

∂t
+ ∂Bs

∂qj

q̇j = m2c

2e
εsij {q̈i , q̇j } + m2c

2e
εsij {q̇i , q̈j } = m2c

e
{q̈i , q̇}. (39)

Substituting (34) into the right hand side of (39), dividing out the common factor
of e, and using property (ii) of the Poisson bracket, there results

mεsij

{
Ei + 1

c
εial q̇aBl, q̇l

}
= mεsij {Ei, q̇j } + m

c
{Bs, q̇j }q̇j + m

c
{q̇j , q̇j }Bs

−m

c
{q̇s , q̇j }Bj − m

c
q̇s{Bj , q̇j }. (40)
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The second to last term on the right hand side of (40) is zero by symmetry, and
upon substitution of the equation {q̇l , Bl} = 0 into (40), this expression reduces to
the following

∂Bs

c ∂t
+ ∂Bs

c ∂qj

q̇j = −εsji

∂Ei

∂qj

+ 1

c

∂Bs

∂qj

q̇j .

Simplifying this, the following Maxwell equation is obtained in the usual form

1

c

∂B
∂t

+ ∇ × E = 0. (41)

4. RECONSTRUCTION OF THE LAGRANGIAN

The fundamental Poisson brackets have been assumed to have the structure
given in (23), in particular, if we combine (23) and (25), the basic relation is of
the form

m{qi, q̇j } = δij . (42)

Consider the classical equations of motion with all masses set to unity of the form

q̈i = fi(q, q̇, t).

A nonsingular matrix Wij and a function L(q, q̇, t) are sought such that

Wis(q̈
s − F s) = d

dt

∂L

∂q̇i
− ∂L

∂qi
. (43)

The conditions for the existence of Wij and L are called the Helmholtz conditions
(Bracken, 2002). If a Lagrangian L exists, then Wij is given by

Wij = ∂2L

∂q̇i∂q̇j
. (44)

From (42), we take Wij to be proportional to δij . For the Hessian (44) to be
invertible, the Lagrangian must obey

∂2L

∂q̇i∂q̇j
= mδij . (45)

Integrating (45), it can be seen that if L exists, it must have the form

L= 1

2
mq̇i q̇j δij + e

c
q̇i Ai − eA0 + C= 1

2
mṙ2 + e

c
ṙ · A − eA0+C(E, B, A, A0).

(46)

where the quantity C can be regarded as a constant of integration which will be
a functional of the fields which were introduced in producing the solution (34)
and Equations (38) and (41). Such a term would represent an energy contribution
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associated with these fields, and its exact structure can be determined next on
physical grounds. The existence of L, however, does follow from the Helmholtz
equations, as will be seen. If some physical ideas are now introduced and applied,
the Lagrangian (46) can be generalized to the structure given in (1) by using (46)
and writing

L =
N∑

α=1

1

2
mα ṙ2

α + 1

c

∫
d3x (J · A − cρA0) + C(E, B, A, A0), (47)

where ρ and J have been defined in (2) and (3).
We say that the force F(t, qj , q̇j , q̈j ) is potential if Lagrange’s equations of

motion
∂T

∂qi
− d

dt

∂T

∂q̇i
= Fi,

are variational, that is, if there exists a Lagrange function L such that

∂T

∂qi
− d

dt

∂T

∂q̇i
− Fi = ∂L

∂qi
− d

dt

∂L

∂q̇i
.

The necessary and sufficient conditions for a force F i(t, qj , q̇j ) to be potential
can be written

∂Fi

∂q̇j
+ ∂Fj

∂q̇i
= 0,

∂Fi

∂qj
− ∂Fj

∂qi
+ d

dt

∂Fj

∂q̇i
= 0.

(48)

The first of these can be differentiated with respect to q̇j to give

∂2Fi

∂q̇j ∂q̇k
= − ∂2Fk

∂q̇i∂q̇j
= − ∂2Fj

∂q̇i∂q̇k
= − ∂2Fi

∂q̇j ∂q̇k
,

therefore,
∂2Fi

∂q̇j ∂q̇k
= 0.

This equation can now be integrated to give the result Fi = aij q̇
j + bi , where aij

and bi are functions of (t, qk). Substituting Fi into the pair (48), we obtain a set
of three conditions on the aij and bi as follows

aij = −aji,

∂ais

∂qj
+ ∂asj

∂qi
+ ∂aji

∂qs
= 0, (49)

∂bi

∂qj
− ∂bj

∂qi
= ∂aij

∂t
.



Determination of the Electromagnetic Lagrangian 137

By setting aij = −(e/c)εijkB
k and eEi = δij bj , we obtain the Lorentz force law

(34) after reversing the direction of the velocity vector, such that E and B satisfy,

∇ · B = 0, ∇ × E = −1

c

∂B
∂t

.

These results are consistent with the development from the Poisson bracket point
of view. It is interesting to note that if we make the opposite selection bi = δijB

j

and aij = εijkE
k , albeit for which there is no known force law, the remaining

two sourceless Maxwell equations appear. Of course, the Maxwell equations are
known to be symmetric under the transformations E → B and B → −E.

To determine the quantity C in (47), we have to be allowed to reason from a
physical point of view. This functional will be a scalar formed from the fields E
and B, which will serve as a Lagrangian for these fields. To this end, we construct
a functional of the form

Lem =
∫

d3x (α E2(x, t) + β B2(x, t) + γ E(x, t) · B(x, t)), (50)

and identify Lem with the integration constant C. This reflects the fact that the
fields involved will have an energy density associated with them in the absence of
particles. Adding terms such as A2 and A2

0 to this integrand would destroy the form
invariance of the total Lagrangian under the addition of a total time derivative.

Since E is a vector and B is a pseudovector, this will be invariant with
respect to parity only if γ = 0. The constants α and β can be taken so that other
equations and quantities obtained from L will have their standard forms, in this
case, α = β = 1/2. Now, from the Lagrangian and the principle of least action,
we can immediately determine the remaining two Maxwell equations. If the action
is varied with respect to A0, Gauss’s law results and if we vary with respect to A,
then the Ampére–Maxwell law results as before.

To summarize, it has been shown that a set of basic Poisson brackets leads to
some of the basic structures in electromagnetism, in particular, the Lorentz force
law. This can then be used in turn to develop a Lagrangian which must exist on
account of the Helmholtz conditions. It is also quite interesting that without any
direct appeal to Lorentz invariance, a system of equations results which can be
shown to be relativistically invariant under Lorentz transformations (Berard, 1999;
Berard and Mohrbach, 2000).

It can be seen that the Maxwell equations are partitioned into two groups,
and this is clearly indicated in the details of the reconstruction. Both Faraday’s
law (21) and (22) are kinematical laws. They follow from the relationship between
the actual fields and the charged particles. It is not surprising then that these two
equations are generated by the set of Poisson brackets (van Holten, 1991). On the
other hand, the Ampére–Maxwell law (18) and Gauss’s law (20) are dynamical
equations. It would be of interest to know whether other types of equations of
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physical interest, for example to the realm of gravity (Tanimura, 1992), can be
developed along similar lines as described here.
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